High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces

نویسنده

  • Shan Zhao
چکیده

This work overcomes the difficulty of the previous matched interface and boundary (MIB) method in dealing with interfaces with non-constant curvatures for optical waveguide analysis. This difficulty is essentially bypassed by avoiding the use of local cylindrical coordinates in the improved MIB method. Instead, novel jump conditions are derived along global Cartesian directions for the transverse magnetic field components. Effective interface treatments are proposed to rigorously impose jump conditions across arbitrarily curved interfaces based on a simple Cartesian grid. Even though each field component satisfies the scalar Helmholtz equation, the enforcement of jump conditions couples two transverse magnetic field components, so that the resulting MIB method is a full-vectorial approach for the modal analysis of optical waveguides. The numerical performance of the proposed MIB method is investigated by considering interface problems with both constant and general curvatures. The MIB method is shown to be able to deliver a fourth order of accuracy in all cases, even when a high frequency solution is involved. 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources

This paper introduces a novel high order interface scheme, the matched interface and boundary (MIB) method, for solving elliptic equations with discontinuous coefficients and singular sources on Cartesian grids. By appropriate use of auxiliary line and/or fictitious points, physical jump conditions are enforced at the interface. Unlike other existing interface schemes, the proposed method disas...

متن کامل

On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method

This work overcomes the difficulty of dealing with large curvatures in a high order matched interface and boundary (MIB) method proposed for solving elliptic interface problems. The MIB method smoothly extends the solution across the interface so that standard high order central finite difference schemes can be used without the loss of accuracy. One feature of the MIB is that it disassociates t...

متن کامل

A high-order accurate, collocated boundary element method for wave propagation in layered media

The ultimate goal of this research is to construct a hybrid model for sound propagation in layered underwater environments with curved boundaries by employing a di↵erential formulation for inhomogeneous layers and a boundary integral formulation for homogeneous layers. The discretization of the new hybrid model is a combination of a finite di↵erence method for the Helmholtz equation for inhomog...

متن کامل

Time-domain matched interface and boundary (MIB) modeling of Debye dispersive media with curved interfaces

Article history: Received 11 October 2013 Received in revised form 14 July 2014 Accepted 19 August 2014 Available online 28 August 2014

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2010